Design of Artificial Neural Networks Based on Genetic Algorithms to Forecast Time Series
نویسندگان
چکیده
In this work an initial approach to design Artificial Neural Networks (ANN) using Genetic Algorithms (GA) is tackle. A key issue for these kind of approaches is what information contains, or is included, in the chromosome that represent an ANN, and there are two principal ideas about these question: first, information about parameters of the topology, architecture, learning parameters, etc. of ANN, i.e. Direct Encoding; second, initial information related to a constructive method that give rise to an ANN topology or architecture, i.e Indirect Encoding. The results for an Direct Encoding (in order to compare with Indirect Encoding developed in future works), for design ANN to NN3 Forecasting Time Series Competition.
منابع مشابه
Forecasting S&P 500 index using artificial neural networks and design of experiments
The main objective of this research is to forecast the daily direction of Standard & Poor's 500 (S&P 500) index using an artificial neural network (ANN). In order to select the most influential features (factors) of the proposed ANN that affect the daily direction of S&P 500 (the response), design of experiments are conducted to determine the statistically significant factors among 27 potential...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملIran's Electrical Energy Demand Forecasting Using Meta-Heuristic Algorithms
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
متن کاملForecasting Gold Price using Data Mining Techniques by Considering New Factors
Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...
متن کامل